Can't see it?

Then you need to memorize it or actually do the math in your calculator ${\it i}$

Change factor to Rate = [Change factor for Concentration]^x

Examples of determining the orders by actually plugging in				
rate doesn't change	$1 = 2^{x}$	concentration doubles	x = 0	
rate doubles	2 = 2×	concentration doubles	x = 1	
rate quadruples	4 = 2×	concentration doubles	x = 2	
rate increases x8	8 = 2×	concentration doubles	x = 3	
rate is cut in half	$\frac{1}{2} = 2^{x}$	concentration doubles	x = -1	
rate doesn't change	1 = 3×	concentration triples	x = 0	
rate triples	3 = 3×	concentration triples	x = 1	
rate increases by x9	9 = 3×	concentration triples	x = 2	
rate is cut in thirds	$^{1}/_{3} = 3^{x}$	concentration triples	x = -1	
rate quadruples	4 = 4×	concentration quadruples	x = 1	
Etcetc				

Finding Units for k

Remember: $rate = k[A]^{x}[B]^{y} etc \dots$

> Rearrange: $k = \frac{rate}{[A]^{x}[B]^{y} etc...}$

Remember:

 $rate units = \frac{M}{s}$ Concentration unts = M Overall Order = (x + y + etc ...)

Substitute in your units and rewrite: $k = \frac{M/s}{M^{(x+y+etc...)}} \rightarrow k = \frac{M}{M^{(x+y+etc...)*s}} \rightarrow \text{then cancel out units}$

Units for k based on overall order of reaction				
$k = \frac{M}{M^{(x+y+etc)\cdot s}}$				
Overall Order	Example of Units Plugged In	Final Units for k		
0	$k = \frac{M}{M^{(0)} \cdot s} \qquad \qquad = \frac{M}{1 \cdot s}$	$\frac{M}{s} = Ms^{-1}$		
1	$k = \frac{M}{M^{(1)} \cdot s} \qquad = \frac{M}{M \cdot s}$	$\frac{1}{s} = s^{-1}$		
2	$k = \frac{M}{M^{(2)} \cdot s} \qquad = \frac{M}{M \cdot M \cdot s}$	$\frac{1}{M \cdot s} = M^{-1}s^{-1}$		
3	$k = \frac{M}{M^{(3)} \cdot s} \qquad = \frac{M}{M \cdot M \cdot M \cdot s}$	$\frac{1}{M^2 \cdot s} = M^{-2}s^{-1}$		
4	$k = \frac{M}{M^{(4)} \cdot s} \qquad = \frac{M}{M \cdot M \cdot M \cdot M \cdot s}$	$\frac{1}{M^3 \cdot s} = M^{-3}s^{-1}$		
Etcetc				

Remember: $M = \frac{mol}{L}$ $\frac{1}{M} = M^{-1} = \frac{L}{mol}$

You may see this substituted into k units.

For example:
$$M^{-1}s^{-1} = \frac{L}{mol \cdot s}$$